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ABSTRACT 

The following result is proved: let E be an F-space (that is, the space of all con- 
tinuous affine functions defined on a compact universal cap vanlsh'ng at zero) 
and let M c E be an M-ideal. Then, if E/Mis a nrspace with positive defining 
projections, then there is a positive linear operator p: ELM--* Eof  norm one 
such that p lifts the canonical map E--* ElM. In the proof, which heavily 
depends on work of Ando, we s'udy ensor products of certain convex cones 
with compact bases, and we calculate the norm of a positive linear operator 
defined on a finite dimensional space with range in a F-space. Various corollar- 
ies are deduced for split faces of compact convex sets and for morphisms of 
C*-algebras. 

1. Introduction 

Let , :  A ~ B be a surjective morph i sm of  C*-algebras, and consider the prob-  

lem of  finding a linear regular (that is, positive and norm-preserving)  right inverse 

o f  , .  The well-known fact that  Co has no closed complement  in 1 ~ shows that  

there may be no such operator .  On  the other hand,  the classic result o f  Borsuk 

[5] for commuta t ive  separable algebras is generalized in Asimow ['4] to the 

effect that  there is a solution if B is separable and kerz  commuta t ive .  

The  main result o f  this paper ,  Theorem 9, states that  a regular linear inverse 

exists p rov ided 'B  is a zh-space with positive defining projections. Since the p roof  

is purely order-theoretic,  we work  in the class o f  F-spaces,  that  is, ordered Banach 

spaces that  are representable as spaces of  cont inuous alfine functions defined 

on compac t  universal caps. In this set-up the right inverse becomes a regular 

linear extension opera tor  for the natural  restriction map.  
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Basic for our work is Ando's paper [3] in which he introduced the concept 

of a splittable convex set relative to an M-ideal, thereby generalizing the M- 

ideals of Alfsen and Effros [1] and proving extension theorems analogous to 

[1, Th. 5.4, Part I]. These results and the method of stepwise approximate ex- 

tension devised by Michael and Pelczynski [8] enabled him to show the existence 

of a norm-preserving right inverse of T: E --+ ElM where M c E is an M-ideal 

in the Banach space E such that E/M is a 7q-space. In addition, his paper con- 

tains a version specialized to ordered Banach spaces with simplicial positive 

cones in the approximating finite dimensional subspaces of ElM. 
Our result is a modification of the latter result in the sense that we may dispense 

with the condition of simplicial cones (which we must do in the case of non- 

commutative C*-algebras due to their lack of peaked partitions, see [3] and [8]) 

when specializing to spaces of a,ffine functions. 

In the process of proving the theorem we study tensor products of certain 

w*-closed convex sets using techniques going back to Grothendieck [7]. We 

obtain some results which may have independent interest (Theorem 11). 

With pleasure I thank T. B. Andersen for many stimulating discussions on 

linear extension operators and for relevant references. 

2. Preliminaries 

Unless otherwise stated we consider only real Banach spaces. We use standard 

notation. E* is the dual of E, L(F, E) denotes the set of bounded linear operators 

F ~ E, and we use freely the injections of E | F into L(E*, F) and L(F*, E), 

and into L(H, E) if F happens to be the dual of H. The projective (respectively, 

least dual) cross-norm is denoted by 7 (respectively, 2). We use ( . ) -  (respectively, 

( - ) ~ )  for norm- (respectively, w*-) closure. In particular, if F is finite dim- 

ensional, ( - ) ~  denotes closure for the topology of pointwise tr(E**,E*) con- 

vergence on L(F, E**) since this space is the dual of F | E*. 

If S is a subset of the Banach space E, S~ denotes the intersection of S and 

the closed unit ball of E. By abuse of notation we write S | K for {e |  e s S , f ~  K} 

if K c F .  

If K is a subset of the finite dimensional space F and S a subset of g we define, 

following [3], 

G(K, S) = {dp ~ L(F, 16(K) = s},  

G_(K, S) = {c~ ~ L(F, E**) [~(K) = ~}. 
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Clearly one has G(K, S) ~ c G_(K, 7); it is an important problem to find con- 

ditions for equality. 

We recall that a closed subspace M of the Banach space E is called an M-ideal, 

if M ~ = E* has a closed complement N such that E* - M ~ ~ N is an I t direct 

sum. It is shown in [1], that N is unique, if it exists. 

We can now state the result of Ando [3]. For information on ~rt-spaces, see [8]. 

THEOREM 1. Let E be an ordered Banach space and M c E an M-ideal such 

that the defining projection P onto M ~ satisfies 0 ~_ P ~_ I .  Assume further- 

more that E/M is a nt-space such that the defining projections onto the finite 

dimensional subspaces (F,} are positive. Then, if 

(1) G(F+,,E+) ~ = _G(F~+,(E**) +) for all n, 

there exists a linear regular map p: ElM ~ E such that ~ o p is the identity 

on ElM.  

This is [3, Lemma 9]. If we write out the result of the first step in the proof 

of Theorem 1 we obtain Theorem 2. 

THEOREM 2. Let M and E be as above. Let F be a finite dimensional ordered 

Banach space, and d/: F ~ ElM a positive linear map. Then, if  

C-(F +,E+) ~ = G(F +, (E**)+), 

there exists a positive linear map ~b: F -+ E such that I} qb II = II ~ II and ~ o p=~ .  

3. Tensor products of certain convex sets 

In this section E is a Banach space and F a finite dimensional Banach space. 

We shall be computing polars in various dualities. We write ( )~ for a polar 

computed in the dual space, and ( )~ for the polar computed in the predual. 

PROPOSITION 3. Let K '- F and S c E be norm-closed, convex sets contain- 

ing zero. Then the following are equivalent: 

(i) G(K, S) ~ = G(K, S) and 

(ii) ~ ( K  | S ~ = ~-~(K | S~ 

PROOF. Let us compute G(K, S) -  = G( K S) ~176 With ~ = ~, f i* | e~e F* | E 

we have ~b e G(K, S) if and only if 

r  = Z <A*,f>e, e s for all f e  K .  

Since S = S ~ this is equivalent to 
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< $(f ) ,  e*) ~ 1 for all fE  K, e* e S ~ 

and therefore, G(K,S)= (K|176 ~ and we obtain 

(2)  G(K, 5") ~ = ( K  | S ~ ~176 = ( c ~ ( K  | S~ ~ . 

By analogous reasoning we obtain G_(K,,~)= (K |176  ~ and consequently 

(3) _G(K, S) = (~-~(K | S~ ~ . 

Since G(K, S ) a n d  G(K, 5")~ coincide if and only if their polars in F | E* do, 

the equivalence of (i) and (ii) follows from equations (2) and (3). 

PROPOSITION 4. The conditions of Proposition 3 hold if K and S ~ are w*- 

compact. 

PROOF. Let ~b ~c~(K | S~ We must show that q~e co (K | S~ By [7, 

Prop. 27] $ is a weak integral of a Radon probability measure # on K x S ~ 

for the duality (F* | E, F | E*). Indeed,/~ can be obtained as a w*-limit point 

of discrete measures E 2~3i, | 3e,. with E 2 ~  | e~* w*-approximating $.  We 
have 

(q~,f* | e) = f <f| e*, f*  | e) d#(f, e*). 
J r  x S ~ 

By compactness, we can cover K by a finite set {U,}i~=t of closed convex neigh- 

bourhoods of diameter less than 8. Pick points f~e U~, and turn {U,} into a 

partition by defining I,'1 = Ut ,  V~ = U,I V~-z for 2 < i < n. We disregard 

indices with # (VI x S ~ = 0. Define ~kleF| by 

Since 

/z(V~ x S~ = f v , x so f i | e* d la( f , e* ) . 

c 
<#(~ • S~162 | e) = | (fi , f*)(e*,e)d# (f,e*) 

,Iv i x S  o 

f (e*, e)dg (f, e*) ( f i , f * )  
,Iv i x S  o 

we see that ~j = f~ | e~* where ej* is the barycenter of  the measure that arises 

as the transform of (g(V~ x S~ xsO under the projection K x S ~  S ~ 

In particular e~*e S ~ and therefore 

~, = ~/~(V l x S~ | el* e co(K| S~ 
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Since f~eU, and diam(V~) < e, we have IIs-Y, ll <5 for f e V ~  U,. We now 

derive the following estimate: 

= I x I<,/,- ~,,s* | I ( f  - f , ,  f * )  (e*,e) dl~ (f,e*) I 
.IV t x S  ~ 

< (suPlle*ll)" Ilell z f,, [<S-S,,S*>Idm, e'> 
| x S  o 

_~ (suplle*ll>llell X ~IIs*II#(v, • 

= ~sup II e* I I>'~'l le I1" II S* II, 

where the supremum is taken over S o. Hence II ~ - ~' I1,~ - ~ "  sup II e" II, whence 
the desired norm approximation of q~ by ~,  

COROLLARY 5. (F*| is isometric to F | E*. 

PROOF. We apply Proposition 4 with K = F t (unit ball of F) and S = Et 

to obtain 

8"8(FI| ~ )  = co--(F~ | ~D. 

E~ is the unit ball in E*; the set on the left-hand side is the polar of the unit ball 

in F* | while the set of the right=hand side is the unit ball in F @rE*. This 

shows that ~ is the dual norm of 2. Q.E.D. 

REMARK. Notice that in the proof of Corollary 5 we only used the fact that 

(F* | and F| are isomorphic. The corollary holds with much weaker 

assumptions on F than finite dimensionality (see [7, Th. 8]), but the proof pre= 

sented here in the finite dimensional case is considerably shorter than that in [7]. 

The next proposition deals with convex sets that are not compact. 

PROPOSITION 6. Let K and S be as in Proposition 3 and suppose in addition 

that K and S are closed convex cones such that 

C" co(K t | (S~ = (co(K | S~ 

for some C > O. Then the conditions of Proposition 3 hold. 

PRooF. By the Krein-gmulian theorem it suffices to prove that c'o(K| S ~ 

meets the unit ball U of F | E* in a w*-closed set. By assumption we have 

U n co(K | S ~ ,'- C" co(Kl | (S~ 

whence, since ~ ( K t  | (S~ = c--~Kt | (S~ by Proposition 4, 
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(U ~ co(K | S~ ~ = (U :~ co(K | S~ = (C'  co(Kt | (S~ :~ U 

= (C. co(K1 | (S~ n U = co(K | S ~ n V 

from which it follows that U n co(K | S ~ is w*-closed. Q.E.D. 

4. Extension operators for spaces of afline functions 

The key result of this section is Proposition 8 which states that (1) holds when 

E is an F-space. For general information on F-spaces, see, for example, [1]. 

We recall that an F-space is an ordered Banach space of the form Ao(X), where 

X is a compact universal cap of a cone. We shall need the following two proper- 

ties of F-spaces: 

(i) If {e,} is a finite subset of the open ball unit, then there is an e in the open 

unit bail with e > e~ (the unit ball is approximately directed). 

(ii) If e*~E* with e* __> 0 then Ile*ll = sup<e,e*> where the supremum is 

taken over the positive part of the open unit ball. 

Finally, we shall need the following (well-known) lemma. 

LEMMA 7. Let F be a finite dimensional, ordered Banach space. Then 

there is a C > 0  such that if  f t , . . . , f , ~ F  +, then 

c II z ~ U ~ z II ~ II. 
PRooF. We may assume Z IIs, II = ~ by homogeneity. The set 

A -- {f~F+l  Ilsll = J} is closed and its convex hull does not contain zero (it 

is tacitly assumed that F + is closed and proper). Since F is finite dimensional, 

co(A) is closed, and therefore there is a ball around zero with radius, say C - I  

not meeting co(A). But ]~ fi~co(A), so we are done. 

PROPOSITION 8. Let E be a F-space and F a finite dimensional, ordered 

Banach space. Then 

CCF +, ~+)~ = _~(F +, (E+)~). 

PROOF. By Proposition 6 it suffices to verify that C.co(F + @(E+)~ 

(co(F+|176 I for some C > 0 .  Since (E+) ~  - E  *+, we may replace 

(E+) ~ by E *+. Let ~ - -  ~,f~@ei*e(co(F+| t .  Considering ~ as an 

element of L(E,bO, c~ is positive and 

II ~ II -- sup II ~(e) II => sup {ll ~(e)II I e ~ o, lie II < ~)" 
II ell < t 

By Lemma 7 we see that 
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II~(e311 = II Z<e,e~*>Y, ll ~ C -1 Z <e,e,*> IlI, II, e ~ O  
for some C > O. Hence 

II ~ II -> c-1 sup z ~e, e,*> II i, II, 
$ 

where the supremum is taken over If e II < 1, e __ 0 The latter quantity equals 

c -1 z II e,' II II f, II by (i) and (ii), and we conclude that E II e,* II II Y, II-- C. 

This obviously implies that c~eC'co(Ft+|  Thus the proposition is 

proved. 

Now we can prove the main result. 

THEOREM 9. Let E be an F-space, M ~ E an M-ideal and r E--, ElM 

the natural map. Suppose that ElM is a ~zl-space such that the defining pro- 

jections are positive. Then there is a repular linear map p: ElM--* E such 

that ~o p is the identity on E/M.  

PgOOF. We shall apply Theorem 1. Condition (1) holds, by Proposition 8, 

and the projection P satisfies 0 < P .g_ I by [1, p. 164]. (In fact, P* is a restriction 

operator when E** and (ELM)** are identified with spaces of attine functions.) 

By duality we obtain Theorem 10. 

THEOREM 10. Let X be a compact convex set in a locally convex real vector 

space. Let Y c X be a closed split face such that A(Y) is a rq-space with positive 

definin# projections. Then there exists a continuous a~ne retraction r: X-- ,  Y. 

PgOOF. The kernel of the restriction map A(X) --* A(Y) is an M-ideal (see 

[1]), so we apply Theorem 9 to find a regular extension operator p: A(Y) --, A(X). 

With t~ any state on A(Y) we let p ' = p  + (1 -p (1 )  ) t~: A(Y) ~ A(X) .  It is verified 

by inspection that p '  is a regular extension operator with p'(1) = 1. The trans- 

pose of  p'  is the desired retraction. 

THEOREM 11. Let E be an F-space and F an ordered finite dimensional 

Banach space. Then 

(i) the set of positive linear maps F ~  E of norm at most 1 is w*-dense 

in the set of positive linear maps F ~ E** of norm at most one, and 

(ii) i f  M = E is an M-ideal and c~: F ~ E/M is positive with Il dp ll = I ,  

then there is a positive linear map ~: F ~ E such that II ~' [I = i and ~ o ~ = ~ 

PROOF. (i) Proposition 8 yields G(F +,E+) ~ = G_(F +,E **+) since 

(E+) ~ = E **+. As observed by Ando [3] we have (G(F +, E+)I) ~ = ((G(F +, E+)~)t 
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because G(F+,E +) is a closed cone. Hence (i) is proved. (ii) Again Proposition 8 

applies, this time to Theorem 2 to give the conclusion. 

REMARK. A result analogous to (ii) has been proved by T. B. Andersen (un- 

published). 

The fact that the approximation property or some stronger property is always 

assumed (see [2], [-3], [6], and [8]) for som~ Banach space in extension theorems 

is explained by Davie [6]. His construction can easily be modified to yield the 

following proposition. 

PROPOSmON 12. Let :~ be a separable F-space. Then there exists an F-space 

E and a quotient map z: E -~ ~ such that ker z is an M-ideal and E has the metric 

approximation property with positive defining operators. Thus the existence 

of a regular extension operator would imply that ~ has the metric approxi- 

mation property with positive defining operators. 

SKETCH OF PROOF. Consider/~ as the space of continuous affine functions on 

its state space, vanishing at zero. Following the procedure of [6] we can imbed 

this state space in a compact subset S of R ~~ . Now, letting X = (6"(S), E = Ao(X) 

will do. 

REMARK. We have been unable to prove Theorem 9 with the weaker assump- 

tion of merely positive metric approximation on E/M. The question whether 

the positive hi-property is necessary is left open too. 

5. Right inverses for morphism of C*-algebras 

In this section we return to the problem originally asked. To extend Theorem 9 

to C*-algebras we need the following lemma. 

LEMMA 13. Let p: B ~ A be a positive linear map of C*-algebras. Then 

II II = II II, 

where B h i8 the hermitian part of B. 

PROOF. If B is unital this is essentially [9, Cor. 1]. If not, we can extend p to 

the algebras with units adjoined by letting /~(1)= 2" 1, where 2 = llpt.hll. 
It is a routine matter to check that/~ is positive, and the result follows. 

THEOREM 14. Let z: A ~ B be a surjective morphism of C*-algebras. Sup- 

pose B is a nt-space such that the defining projections are positive. Then there 
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is a positive l inear map  p: B ~ A o f  norm one such that  z o p is the ident i ty  

on B .  

PROOF. The hermitian part Ah (respectively, Bh) of A (respectively, B) is an 

F-space, M = ker ~ n Ah is an M-ideal [1] so we may apply Theorem 9 to find 

a regular linear map p' :  B, ~ Ah such that ~ o p' -- ida,. Th- ~ ca~?lex extension 

p of p' to B meets all the conditions in view of Lemma 13. 

Theorem 10 and Theorem 110) obviously apply to C*-algebras. However, 

it is not clear whether the map ~ of Theorem 1 l(ii) has norm 1 when extended 

to a complex linear map. 

An interesting problem is to find the class of C*-algebras that are hi-spaces 

with positive projections. Commutative algebras, UHF algebras, and the algebra 

of compact operators on separable Hilbert space are in that class, and probably 

a large class of CCR algebras, too. 

We know of no algebras outside the class, let alone algebras without the ap- 

proximation property. It has been conjectured that the C*-algebra of the free 

group with two generators does not have the approximation property. 

ADDED IN PROOF 

T. B. Anderson has improved Theorem 9 in the unital case [101. 
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